Tuesday, March 17, 2009

JDBC

Java Database Connectivity (JDBC)
Java Database Connectivity (JDBC) is an API for the Java programming language that defines how a client may access a database. It provides methods for querying and updating data in a database. JDBC is oriented towards relational databases.
The Java 2 Platform, Standard Edition, version 1.4 (J2SE) includes the JDBC 3.0 API together with a reference implementation JDBC-to-ODBC bridge, enabling connections to any ODBC-accessible data source in the JVM host environment. This bridge is native code (not Java), closed source, and only appropriate for experimental use and for situations in which no other driver is available, not least because it provides only a limited subset of the JDBC 3.0 API, as it was originally built and shipped with JDBC 1.0 for use with old ODBC v2.0 drivers (ODBC v3.0 was released in 1996).
Overview
JDBC has been part of the Java Standard Edition since the release of JDK 1.1. The JDBC classes are contained in the Java package java.sql. Starting with version 3.0, JDBC has been developed under the Java Community Process. JSR 54 specifies JDBC 3.0 (included in J2SE 1.4), JSR 114 specifies the JDBC Rowset additions, and JSR 221 is the specification of JDBC 4.0 (included in Java SE 6).
JDBC allows multiple implementations to exist and be used by the same application. The API provides a mechanism for dynamically loading the correct Java packages and registering them with the JDBC Driver Manager. The Driver Manager is used as a connection factory for creating JDBC connections.
JDBC connections support creating and executing statements. These may be update statements such as SQL's CREATE, INSERT, UPDATE and DELETE, or they may be query statements such as SELECT. Additionally, stored procedures may be invoked through a JDBC connection. JDBC represents statements using one of the following classes:
· Statement – the statement is sent to the database server each and every time.
· PreparedStatement – the statement is cached and then the execution path is pre determined on the database server allowing it to be executed multiple times in an efficient manner.
· CallableStatement – used for executing stored procedures on the database.
Update statements such as INSERT, UPDATE and DELETE return an update count that indicates how many rows were affected in the database. These statements do not return any other information.
Query statements return a JDBC row result set. The row result set is used to walk over the result set. Individual columns in a row are retrieved either by name or by column number. There may be any number of rows in the result set. The row result set has metadata that describes the names of the columns and their types.
There is an extension to the basic JDBC API in the javax.sql.
Example
The method Class.forName(String) is used to load the JDBC driver class. The line below causes the JDBC driver from some jdbc vendor to be loaded into the application. (Some JVMs also require the class to be instantiated with .newInstance().)
Class.forName( "com.somejdbcvendor.TheirJdbcDriver" );
In JDBC 4.0, it's no longer necessary to explicitly load JDBC drivers using Class.forName(). See JDBC 4.0 Enhancements in Java SE 6.
When a Driver class is loaded, it creates an instance of itself and registers it with the DriverManager. This can be done by including the needed code in the driver class's static block. e.g. DriverManager.registerDriver(Driver driver)
Now when a connection is needed, one of the DriverManager.getConnection() methods is used to create a JDBC connection.
Connection conn = DriverManager.getConnection(
"jdbc:somejdbcvendor:other data needed by some jdbc vendor",
"myLogin",
"myPassword" );
The URL used is dependent upon the particular JDBC driver. It will always begin with the "jdbc:" protocol, but the rest is up to the particular vendor. Once a connection is established, a statement must be created.
Statement stmt = conn.createStatement();
try {
stmt.executeUpdate( "INSERT INTO MyTable( name ) VALUES ( 'my name' ) " );
} finally {
//It's important to close the statement when you are done with it
stmt.close();
}
Note that Connections, Statements, and ResultSets often tie up operating system resources such as sockets or file descriptors. In the case of Connections to remote database servers, further resources are tied up on the server, e.g., cursors for currently open ResultSets. It is vital to close() any JDBC object as soon as it has played its part; garbage collection should not be relied upon. Forgetting to close() things properly results in spurious errors and misbehaviour. The above try-finally construct is a recommended code pattern to use with JDBC objects.
Data is retrieved from the database using a database query mechanism. The example below shows creating a statement and executing a query.
Statement stmt = conn.createStatement();
try {
ResultSet rs = stmt.executeQuery( "SELECT * FROM MyTable" );
try {
while ( rs.next() ) {
int numColumns = rs.getMetaData().getColumnCount();
for ( int i = 1 ; i <= numColumns ; i++ ) {
// Column numbers start at 1.
// Also there are many methods on the result set to return
// the column as a particular type. Refer to the Sun documentation
// for the list of valid conversions.
System.out.println( "COLUMN " + i + " = " + rs.getObject(i) );
}
}
} finally {
rs.close();
}
} finally {
stmt.close();
}
Typically, however, it would be rare for a seasoned Java programmer to code in such a fashion. The usual practice would be to abstract the database logic into an entirely different class and to pass preprocessed strings (perhaps derived themselves from a further abstracted class) containing SQL statements and the connection to the required methods. Abstracting the data model from the application code makes it more likely that changes to the application and data model can be made independently.
An example of a PreparedStatement query. Using conn and class from first example.
PreparedStatement ps = conn.prepareStatement( "SELECT i.*, j.* FROM Omega i, Zappa j WHERE i.name = ? AND j.num = ?" );
try {
// In the SQL statement being prepared, each question mark is a placeholder
// that must be replaced with a value you provide through a "set" method invocation.
// The following two method calls replace the two placeholders; the first is
// replaced by a string value, and the second by an integer value.
ps.setString(1, "Poor Yorick");
ps.setInt(2, 8008);

// The ResultSet, rs, conveys the result of executing the SQL statement.
// Each time you call rs.next(), an internal row pointer, or cursor,
// is advanced to the next row of the result. The cursor initially is
// positioned before the first row.
ResultSet rs = ps.executeQuery();
try {
while ( rs.next() ) {
int numColumns = rs.getMetaData().getColumnCount();
for ( int i = 1 ; i <= numColumns ; i++ ) {
// Column numbers start at 1.
// Also there are many methods on the result set to return
// the column as a particular type. Refer to the Sun documentation
// for the list of valid conversions.
System.out.println( "COLUMN " + i + " = " + rs.getObject(i) );
} // for
} // while
} finally {
rs.close();
}
} finally {
ps.close();
} // try
A typical implementation model of Java-RMI using stub and skeleton objects. Java 2 SDK, Standard Edition, v1.2 removed the need for a skeleton.
The Java Remote Method Invocation API, or Java RMI, a Java application programming interface, performs the object-oriented equivalent of remote procedure calls.
Two common implementations of the API exist:
1. The original implementation depends on Java Virtual Machine (JVM) class representation mechanisms and it thus only supports making calls from one JVM to another. The protocol underlying this Java-only implementation is known as Java Remote Method Protocol (JRMP).
2. In order to support code running in a non-JVM context, a CORBA version was later developed.
Usage of the term RMI may denote solely the programming interface or may signify both the API and JRMP, whereas the term RMI-IIOP (read: RMI over IIOP) denotes the RMI interface delegating most of the functionality to the supporting CORBA implementation.
The programmers of the original RMI API generalized the code somewhat to support different implementations, such as an HTTP transport. Additionally, work was done to CORBA, adding a pass-by-value capability, to support the RMI interface. Still, the RMI-IIOP and JRMP implementations do not have fully identical interfaces.
RMI functionality comes in the package java.rmi, while most of Sun's implementation is located in the sun.rmi package. Note that with Java versions before Java 5.0 developers had to compile RMI stubs in a separate compilation step using rmic. Version 5.0 of Java and beyond no longer require this step.Jini offers a more advanced version of RMI in Java - it functions similarly but provides more advanced searching capabilities and mechanisms for distributed object applications.

No comments:

Post a Comment